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Abstract. In this paper, we introduce a block version and a perturbed block version of the accelerated
cyclic subgradient projections method with constraints and give their convergence analyses. The perfor-
mance of the algorithm is illustrated with a numerical example from the computed tomography and six
standard nonlinear test problems. We compare our algorithms with the accelerated cyclic subgradient
projections method. Our algorithms produce better results than accelerated cyclic subgradient projec-
tions method and have ability to reduce the value of an objective function. Furthermore, the perturbed
block version is able to control semiconvergence phenomenon comparing two other methods.
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1. INTRODUCTION

Let {Ci}m
i=1⊆Rn be closed convex sets and C =

⋂m
i=1Ci 6= /0. The problem of finding a point in

C is called convex feasibility problem (CFP), see, e.g., [1] for more general setting. A consistent
linear system of equations Ax = b is a simple example of a CFP. Many problems in mathematics
and physical sciences can be modeled as a CFP. Some real world inverse problems, which deal
with image reconstruction, as computerized tomography, radiation therapy treatment planning,
signal processing, impedance tomography and electron microscopy are modeled as a CFP, see
[1] for more applications. It is easy to check that there exists at least one nonnegative convex
function gi : Rn→R+ for each Ci such that Ci = {x|gi(x) = 0}. For example, one may consider
gi(x) = miny∈Ci ‖x−y‖, where ‖x‖ denotes a norm, e.g., the Euclidean norm. Therefore, a CFP
can be written as the following consistent nonlinear system of equations

g1(x) = 0,
...
gm(x) = 0,

(1.1)

∗Corresponding author.
E-mail addresses: m.abbasi78@gmail.com (M. Abbasi), tnikazad@iust.ac.ir (T. Nikazad).
Received August 27, 2019; Accepted December 14, 2019.

c©2020 Journal of Applied and Numerical Optimization

3



4 M. ABBASI, T. NIKAZAD

where {gi}m
i=1 are nonnegative convex functions, see [5, p. 24 and p. 28]. Thus, showing a

CFP as (1.1) demonstrates the importance of nonlinear system of equations as (1.1). In this
paper, we introduce a (perturbed) block version of ACSP for solving (1.1), where {gi}m

i=1 are
any nonnegative convex functions.

Several iterative methods for solving CFP have been studied. The method of successive
orthogonal projections (SOP) [11], the cyclic subgradient projections method (CSP) [8] and
parallel subgradient projections method (PSP) [22] are some of those iterative methods. See
[1, 6] for a review of the methods. Recently, an acceleration technique (introduced by De Pierro
[9]) was applied to the fully sequential CSP method which is named accelerated CSP (ACSP)
method, see [15].

In this paper, we study the constraint block version of the ACSP with perturbation for solving
(1.1) and give its convergence analysis. Indeed, we consider the convergence analysis of the
following perturbation iteration

xk+1 =U(xk + β̄kv̄k), k = 1,2, . . . (1.2)

where U =Up · · ·U2U1 and U j = PQTj for j = 1,2, · · · , p. Here, Q 6= /0 is a closed convex subset
of Rn and PQ denotes the metric projection operator onto Q. We consider PQ in our algorithm to
select solutions of (1.1) which satisfy some kind of constraint, see Section 3 for a specific case.
The iteration operators Tj are picked from a finite pool of operators which is based on the ACSP
method. Furthermore, the sequences {v̄k}∞

k=1 ⊂ Rn and {β̄k}∞
k=1 ⊂ R are given. An example of

v̄k, which is based on total variation norm, is used in Section 3.
The perturbation iterative methods are relevant and important for their possible use in the

framework of the recently developed superiorization methodology for the constrained mini-
mization problems. The general idea of the superiorization is to combine optimization while
seeking feasibility. This approach was first suggested in [2], but its origin goes back to [3, 4]
and references therein. The superiorization principle does not try to find just a feasible point
and not at the quest for a constrained minimum point. Instead, it tries to seek a feasible point
that is superior over other accessible feasible points, with respect to a given objective function,
see, e.g., [7, 16, 17, 21, 23]. As a simple example, consider a consistent linear system of equa-
tions Ax = b. The minimization problem minx∈Rn ‖b−Ax‖ may have many solutions. One may
be interested to obtain a solution which optimizes a certain function, say total variation used
in imaging applications, see [20]. In these special applications, the minimum value of the total
variation is reached at zero which is not a feasible point. Therefore, the superiorization method
seeks a feasible point which is better over other reachable feasible points and it gives probably
a small enough value for total variation, see [2, 20].

1.1. Organization. In Subsection 1.2, we give a brief introduction regarding Φ-class operators
(see [17]) which is useful for our convergence analysis. In Section 2, we consider a block
version of (1.1) and build up a block version of ACSP method. Furthermore, we define the
operators Tj, see (1.2), based on block ACSP. Theorem 2.1 shows that the operators Tj belong
to Φ-class. At the end of this section, we give a convergence analysis of the iterative method
(1.2), i.e., superiorized version of block ACSP. To show the performance of the superiorized
block ACSP, we give some numerical results which are taken from the field of tomography and
standard nonlinear test problems in Section 3.
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1.2. Preliminaries. Most of the operators used for solving CFPs belong to a new introduced
class of operators namely Φ-class [17]. A subclass of Φ-class has been defined in [19].

Definition 1.1. An operator T : D⊆Rn −→D with FixT 6= /0 belongs to Φ-class when satisfies
two following conditions.

(I) For every z ∈ FixT there exist a non-negative real function φz such taht

‖z−T (x)‖ ≤ ‖z− x‖−φz(x) (1.3)

(II) If the sequence {xk} converges to α and lim
k→∞

φz(xk) = 0 then α ∈ FixT

Φ-class is closed under composition and convex combination of operators. This property
is very important because it allows to use Φ-class operators in different algorithmic structure
such as (block) sequential, (block) simultaneous iterative methods, string averaging and recently
introduced pattern structures [18].

Proposition 1.1. [17, Proposition 13] Let T,T1,T2 ∈Φ and FixT1∩FixT2 6= /0. Define Tλ (x) =
x+λ (T (x)− x) where 0 < λ < 1. then

(1) FixTλ = FixT and Tλ ∈Φ.
(2) Fix(λT1 +(1−λ )T2) = FixT1∩FixT2 and λT1 +(1−λ )T2 ∈Φ.
(3) Fix(T1T2) = FixT1∩FixT2 and T1T2 ∈Φ.

Remark 1.1. The Proposition 1.1 can be easily extended for finite number of operators.

2. MAIN RESULTS

In this section, we consider a block version of (1.1) and define the operators {Tj}p
j=1, which

make the operator U in (1.2). Here p denotes the number of blocks. Let the nonlinear system
of equations (1.1) be partitioned into p blocks of equations as

B j = {i j
1, i

j
2, · · · , i

j
` j
} ⊆ {1,2, · · · ,m}

such that
⋃p

j=1 B j = {1,2, · · · ,m}. Indeed, based on B j, the selected block includes the equations
gi j

1
(x) = 0, gi j

2
(x) = 0, · · · ,gi j

` j
(x) = 0. Based on each block B j, the operator Tj is defined as

follows
Tj(x) = x−α j(x)β j(x)v j(x)/‖v j(x)‖2. (2.1)

We define below the functions α j(x), β j(x) and v j(x) for j = 1,2, · · · , p.
Let x0 = x be the starting point of the following recursion

xr = xr−1−
gi j

r
(xr−1)

‖si j
r
(xr−1)‖2 si j

r
(xr−1), r = 1, · · · , ` j, (2.2)

where si j
r
(x) is a subgradient of gi j

r
at point x. We should remind here that a vector t ∈ Rn is

called a subgradient of a convex function g at a point y if 〈t,x− y〉 ≤ g(x)− g(y) for every
x ∈ Rn. Note that the statement gi j

r
(x) 6= 0 easily leads to si j

r
(x) 6= 0. Therefore, we assume

si j
r
(x) 6= 0, where gi j

r
(x) = 0 throughout the paper. We consider the following definitions

β j(x) =
` j

∑
r=1

gi j
r
(x)

gi j
r
(xr−1)

‖si j
r
(xr−1)‖2 , β̃ j(x) =

` j

∑
r=1

(gi j
r
(xr−1))2

‖si j
r
(xr−1)‖2 , (2.3)
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and

v j(x) =
` j

∑
r=1

si j
r
(xr−1)

gi j
r
(xr−1)

‖si j
r
(xr−1)‖2 , α j(x) = λ

‖v j(x)‖2 + β̃ j(x)
β j(x)

, (2.4)

where λ ∈ (0,1). Considering (2.3) and (2.4) is based on [15, Algorithm 3] which is mimicked
by [10, p. 312]. We next show the following properties of Tj defined in (2.1).

Theorem 2.1. The operator Tj ∈Φ and Fix Tj = {x|gi j
r
(x) = 0,∀r = 1, · · · , ` j}.

Proof. Let x∗ ∈ {x|gi j
r
(x) = 0,∀r = 1, · · · , ` j}. Using [15, (59)], one easily gets

‖x∗−Tj(x)‖ ≤ ‖x∗− x‖−λ (1−λ )

(
‖v j(x)‖2 + β̃ j(x)
‖v j(x)‖

)2

. (2.5)

We first show
Fix Tj = {x|gi j

r
(x) = 0,∀r = 1, · · · , ` j}.

For x ∈ Fix Tj, using (2.5), we get

‖v j(x)‖2 + β̃ j(x) = 0 (2.6)

and consequently β̃ j(x) = 0. Therefore, using (2.3) and (2.2), we get gi j
r
(x) = 0 for all r =

1, · · · , ` j. It gives Fix Tj ⊆ {x|gi j
r
(x) = 0,∀r = 1, · · · , ` j}. Conversely, let

x ∈ {x|gi j
r
(x) = 0,∀r = 1, · · · , ` j}.

Using (2.2), we get x = x0 = · · ·= x` j and consequently (using (2.3) and (2.1)) x ∈ Fix Tj.
We next show Tj ∈Φ. Using (2.5), and based on Definition 1.1, we can define

φ(x) = λ (1−λ )
(
(‖v j(x)‖2 + β̃ j(x))/‖v j(x)‖

)2
.

Let xq→ α and limq→∞ φ(xq) = 0. We claim that α ∈ Fix Tj. Since limq→∞ φ(xq) = 0 and using
the definition of φ , we get that limq→∞ β̃ j(xq) = 0. Consequently,

lim
q→∞

` j

∑
r=1

(gi j
r
(xr−1

q ))2

‖si j
r
(xr−1

q )‖2
= 0. (2.7)

Using xq→ α, we show that xr−1
q → α for all r = 1, · · · , ` j by induction. For r = 1, using (2.2),

we get xr−1
q = x0

q = xq and consequently xr−1
q → α. Let xr0−1

q → α for an arbitrary r0 > 1.
We now show that xr0

q → α. Based on (2.2), we get

lim
q→∞

xr0
q = α− lim

q→∞

gi j
r0
(xr0−1

q )

‖si j
r0
(xr0−1

q )‖2
si j

r0
(xr0−1

q ). (2.8)

Using xr0−1
q → α and [1, Corollary 7.9, p. 412], there exists K such that ‖si j

r0
(xr0−1

q )‖ ≤ K for
all q = 1,2, · · · . Therefore, we get

lim
q→∞

gi j
r0
(xr0−1

q )

‖si j
r0
(xr0−1

q )‖2
‖si j

r0
(xr0−1

q )‖ ≤ K lim
q→∞

gi j
r0
(xr0−1

q )

‖si j
r0
(xr0−1

q )‖2
. (2.9)
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Using (2.7), (2.8) and (2.9), one gets limq→∞ xr0
q = α. Therefore, limq→∞ xr−1

q = α for all r =
1,2, · · · , ` j. Again, based on xr−1

q → α and [1, Corollary 7.9, p. 412], there exists K1 such
that ‖si j

r
(xr−1

q )‖ ≤ K1 for all r = 1,2, · · · , ` j and q = 1,2, · · · . Thus, equality (2.7) leads to
limq→∞ gi j

r
(xr−1

q ) = 0 for all r = 1, · · · , ` j. Now, based on continuity of gi j
r

and the fact that
limq→∞ xr−1

q = α for all r = 1,2, · · · , ` j, one gets 0 = limq→∞ gi j
r
(xr−1

q ) = gi j
r
(limq→∞ xr−1

q ) =

gi j
r
(α), which leads to α ∈ Fix Tj. Thus, Tj ∈Φ. �

We next give the main theorem of this paper.

Theorem 2.2. Let Q be a closed convex subset of Rn and {gi}m
i=1 be nonnegative and convex

functions on Rn such that

S = Q∩{x|gi(x) = 0, i = 1,2, · · · ,m} 6= /0.

Let {β̄k}∞
k=0 be a summable sequence of positive real numbers (∑∞

k=1 β̄k < ∞) and {v̄k}∞
k=0 be

a bounded sequence in Rn. Then the sequence xk generated by (1.2) and (2.1)-(2.4) with any
starting point converges to a point in S.

Proof. Based on [17, section 2.1, Remark 7], Theorem 2.1 and Proposition 1.1 (note FixTj ∩
FixQ 6= /0), we get that PQ ∈ Φ,Tj ∈ Φ and U j = PQTj ∈ Φ. Using Proposition 1.1 and [17,
Remark 14], we get U ∈ Φ and FixU = Q

⋂p
j=1 FixTj = S. Based on [17, Remark 23], the

proof is completed. �

3. NUMERICAL RESULTS

In this section, we give some numerical results which are taken from the field of tomography
(image reconstruction from projections) and the standard tests from [10] and [13].

3.1. Image reconstruction test. The image reconstruction problem is a well known example,
which can be modeled using the Radon transform. A large, sparse and ill-conditioned linear
system takes place after expanding the solution into a finite series of basis functions. We con-
sider the solution of such systems, i.e., Ax = b where A ∈ Rs×n and b ∈ Rs. Furthermore, let
Q∩{x|Ax = b} 6= /0. Let the linear system Ax = b be partitioned into m row blocks of equations,
which may contain common equations but each equation should appear in at least one of the
blocks. Denote by At and bt the t-th block of A and b, respectively. For the case of a disjoint
partitioning the structure is

A =


A1
A2
...

Am

 , b =


b1

b2

...
bm

 . (3.1)

Let gi(x) = 0.5‖bi−Aix‖2 for i = 1, · · · ,m. It is clear that

x ∈ Q∩{x|Ax = b} 6= /0⇔ x ∈ Q and gi(x) = 0 for i = 1, · · · ,m.

In this section we compare ACSP, block version of ACSP (i.e., the iteration (1.2) with β̄k = 0)
and superiorized block ACSP methods. Since in our application the linear system Ax = b has



8 M. ABBASI, T. NIKAZAD

infinitely many solutions, we steer the superiorized block ACSP method to find an approximate
solution which reduces value of the total variation (TV). Indeed, we consider

v̄k =−
∇TV (xk)

‖∇TV (xk)‖

in (1.2) where TV (y) denotes the total variation of y. For a G×H image y whose pixel values
are denoted by yg,h (1≤ g≤ G,1≤ h≤ H), TV (y) is defined as follows

TV (y) =
G−1

∑
g=1

H−1

∑
h=1

√
(yg+1,h− yg,h)2 +(yg,h+1− yg,h)2. (3.2)

We used the (MATLAB-based) AIR tools software [12] to produce a phantom, the related
coefficient matrices and corresponding right-hand sides. All the numerical results are performed
with Intel(R) Core(TM) i3-3110M CPU 2.4 GHz, 4GB RAM, and the codes have been written
in MATLAB 2018a.

We consider a geometry and use m = 20 which is the number of equations in (1.1) and the
number of row blocks in matrix A. Furthermore, we consider Ai ∈R900×n for all i = 1,2, · · · ,m,
see (3.1). We here use ‘Shepp-Logan’ phantom which is collected from AIR tools software.
The geometry discretizes the phantom into 200× 200 pixels and takes 90 projections (evenly
distributed between 0 and 179 degrees) with 200 rays per projection. The resulting projection
matrix A has dimension 18000× 40000. We use the following parameters for the numerical
results. We consider λ = 0.99 (see (2.4)), β̄k = (0.99)k (see (1.2)), p = 5 (indeed, (1.1) be
partitioned into p blocks), ` j = 4 (number of equations in each block) (see Section 2), Q = {x =
(x1,x2, · · · ,xn)

T ∈ Rn|0 ≤ xi ≤ 1} and zero starting point for three versions of ACSP. Indeed,
we have m = p ` j where constant ` j is used.

Figure 1 shows relative error histories in ACSP, block ACSP and superiorized block ACSP
methods. As it is seen, the superiorization methodology gives smaller relative error than two
other methods. More precisely, block ACSP and superiorized block ACSP methods provide
almost 22.5% and 66.7% better results than ACSP method, respectively. In Figure 2 we show
the original image and the reconstructed images by three methods. Table 1 shows the values
of the total variations for different methods within 20 iterations and the total variation of the
original image. Furthermore, we report the CPU times in seconds. As it is seen in Table 1,
the CPU times of three methods are almost same whereas the value of total variation is notably
reduced by superiorized block ACSP method.

Figure 3 presents the percentage of improvement of block ACSP and superiorized block
ACSP methods with respect to ACSP method. We define the percentage of improvement of
relative error and total variation for block ACSP and superiorized block ACSP methods with
respect to ACSP as follows

PI-RE of ‘method’ = 100×|RE of ‘method’-RE of ACSP|/(RE of ACSP)

where RE and PI-RE denote the relative error and the percentage of improvement of the relative
error for a ‘method’, respectively. Similarly, the percentage of improvement of total variation is
defined as

PI-TV of ‘method’ = 100×|RTV of ‘method’-RTV of ACSP|/(RTV of ACSP)
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FIGURE 1. Relative error histories in ACSP, block ACSP and superiorized
block ACSP methods, noiseless data.

Original ACSP 

block ACSP superiorized block ACSP 

FIGURE 2. The reconstructed images by three methods and the original image,
noiseless data.

TABLE 1. Second row: The value of the total variations for different methods
within 20 iterations and the total variation of the original image. Third row: CPU
time for different methods, noiseless data.

original image ACSP block ACSP superiorized block ACSP
TV 1143.7 1816.6 1784.1 1218.3

CPU time – 4.69 4.79 4.8

where RTV denotes relative total variation and defines as

RTV of ‘method’ = |TV of ‘method’-TV of exact solution|/(TV of exact solution).
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FIGURE 3. Percentage of improvement with respect to ACSP method, noiseless data.
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FIGURE 4. Relative error histories in ACSP, block ACSP and superiorized
block ACSP methods with noisy data.

When applying an iterative method for image reconstruction problem with noisy data, one
may view the iteration index as a regularizing parameter. Initially, the iteration vectors approach
a regularized solution while continuing the iteration often leads to iteration vectors corrupted
by noise, so-called semiconvergence, [14]. We now consider 5% white Gaussian noise for the
right hand side vector b in (3.1). Relative error histories in ACSP, block ACSP and superiorized
block ACSP methods with noisy data are presented in Figure 4. As it is seen, block ACSP
method has the fastest semiconvergence and its superiorized version controls the phenomenon
and gives the smallest relative error.
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3.2. Standard tests. In this section, we compare ACSP and its block version using six standard
test problems from [10, 13]. We use the notations x = (x1,x2, · · · ,xn)

T ∈ Rn, k = 1,2, · · · ,m
and div(a,b) = ba/bc where bac denote the floor of a. Furthermore, mod denotes the modulo
operation. Also, we define gi(x) = max{ fi(x),0} where fi is defined as the following examples.

Example 3.1. The extended Powell singular function is defined as follows

fk(x) =


xi +10xi+1, mod(k,4) = 1,√

5(xi+2− xi+3), mod(k,4) = 2,
(xi+1−2xi+2)

2, mod(k,4) = 3,√
10(xi− xi+3)

2, mod(k,4) = 0,

where m = 2(n−2) and i = 2div(k+3,4)−1.

Example 3.2. The chained Wood function.

fk(x) =



10(x2
i−1− xi, mod(k,6) = 1,

(xi−1−1), mod(k,6) = 2,√
90(x2

i+1− xi+2)
2, mod(k,4) = 3,

(xi+1−1)2, mod(k,6) = 4,√
10(−xi− xi+2 +2), mod(k,6) = 5,

(−xi− xi+2)/
√

10, mod(k,6) = 0,

where m = 3(n−2) and i = 2b(k+5)/6c.

Example 3.3. The extended Rosenbrock function.

fk(x) =
{

10(x2
i − xi+1), mod(k,2) = 1,

xi−1, mod(k,2) = 0,

where m = 2(n−1) and i = div(k+1,2).

Example 3.4. The generalized Broyden tridiagonal function.

fk(x) =


(2xi−3)xi +2xi+1−1, k = 1,
(2xi−3)xi + xi−1 +2xi+1−1, k 6= 1,n,
(2xi−3)xi + xi−1−1, k = n,

where m = n and i = k.

Example 3.5. Penalty function.

fk(x) =
{

(xk−1)/
√

105, k ≤ n,(
∑

n
i=1 x2

i
)
−0.25, k = n+1,

where m = n+1.

Example 3.6. Variably dimensioned function.

fk(x) =


(xk−1), k ≤ n,
∑

n
i=1 i(xi−1), k = n+1,(

∑
n
i=1 i(xi−1)2)2

, k = n+2,

where m = n+2.
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TABLE 2. Number of iterations for ASCP and block ASCP methods with stop-
ping criterion gi(x) < 10−4. The last right column denotes the percentage im-
provement of block ASCP with respect to ACSP.

Example ASCP block ACSP percentage improvement
3.1 413 238 42.37%
3.2 1227 367 70.09%
3.3 456 492 −7.89%
3.4 5 6 −20%
3.5 4 4 0%
3.6 5 5 0%

In the numerical results of this section, we consider m = 3000, p = 100 and ` j = 30. Fur-
thermore, we use (number of unknowns) n = 1502,1002,1501,3000,2999 and 2998 and the
starting points (3,−1,3,−1, · · · ,3,−1), (3,−1,3,−1, · · · ,3,−1), (−1.2,1,−1.2, · · · ,−1.2,1),
(−1,−1, · · · ,−1), (1,2,3, · · · ,n) and (1−1/n,1−2/n,1−3/n, · · · ,1−n/n) for Examples 3.1-
3.6, respectively. The starting points are suggested by [10, 13]. Also we terminate the iteration
where gi(x) < 10−4 for i = 1,2, · · · ,m. Table 2 reports the number of iterations for ACSP and
its block version. In addition, we report the improvement percentage of block ACSP with re-
spect to ACSP. Since the CPU times of ACSP and its block version were almost equal, we
did not report them here. The mean value of iteration numbers of ACSP and its block version
within six examples are 351.67 and 185.33, respectively. Therefore, the block ACSP reduces
47.3%(= 100× (351.67−185.33)/351.67) of iteration numbers using the six test problems.

4. CONCLUSION

We introduce a block version of ACSP method and consider its perturbed version with con-
straints. We demonstrate the convergence analysis of the methods. The performance of the
algorithms are illustrated with two series of numerical examples, which are taken from com-
puted tomography and standard nonlinear test problems. The numerical results of tomography
application show that superiorized block ACSP method, which is based on the idea of supe-
riorization methodology, significantly reduces value of the total variation and has faster error
reduction. Furthermore, it is able to control semiconvergence phenomenon. For the standard
problems, block ACSP method reduces the number of iterations with almost the same compu-
tational time as ACSP method.
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