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Abstract. In this paper, we consider set optimization problems with mixed constraints. We first investigate nec-
essary and sufficient Karush-Kuhn-Tucker optimality conditions for strict minimal solutions. Then, we formulate
types of Mond-Weir and Wolfe dual problems and explore duality relations under convexity assumptions. Some
examples are provided to illustrate our results.
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1. INTRODUCTION

Set-valued optimization problems play an important role in optimization theory because
many models in practice can be described via set-valued optimization problems; see the books
[4, 12, 22] for more details. There are two main types of approaches to define solution concepts
of set-valued optimization problems: the vector approach and the set approach. The former is
the usual one, the latter arises naturally in the real-world application in socio-economic; see the
papers [16, 17, 23], the survey [9] and the references therein. In the vector approach, many types
of generalized derivatives were employed to establish the optimality conditions for set-valued
optimization problems in two directions: the dual spaces and the primal spaces. For some recent
results in this direction, see the books [12, 22], the papers [2, 3, 7, 10, 13, 19, 20, 24] and the
references therein. In the set approach, the optimality conditions for some types of solutions of
set optimization problems were established in terms of the directional derivatives of the contin-
uous selections in [1]. The paper [14] investigated the necessary optimality conditions in terms
of contingent derivatives and Mordukhovich coderivatives for optimal solutions of set optimiza-
tion problems with respect to the possibly and lower set less order relation. By using Studniarski
derivatives, the necessary and sufficient optimality conditions were derived in [15] for optimal
solutions of set optimization problems with respect to the lower set less order relation. To the
best of our knowledge, there is no paper dealing with establishing optimality conditions for the
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set optimization problems with mixed constraints. Moreover, the Mond-Weir and Wolfe dual
problems of set optimizations with mixed constraints also have not been investigated yet.

Motivated by the above observations, in this paper, we establish Karush-Kuhn-Tucker opti-
mality conditions and discuss the duality problems for the set optimization problems with mixed
constraints. The paper is organized as follows. Section 2 recalls basic concepts and some pre-
liminaries. The Karush-Kuhn-Tucker necessary and sufficient optimality conditions for strict
minimal solutions are established in Section 3. Section 4 is devoted to exploring Mond-Weir and
Wolfe dual problems of the set optimization problems with mixed constraints. Some examples
are provided to illustrate our results.

2. PRELIMINARIES

In this paper, let X,Y,Z and W be Banach spaces, C C Y, D C Z be pointed closed convex
cones with nonempty interior. Denote X* the topological dual space of X. The notion By
represents the open unit ball of X and By (x,d) stands for the open ball with center x € X and
radius 8. For a given set A C X, intA, clA, dA, coneA denote its interior, closure, boundary and
the cone {Aa | A >0, a € A} of A, respectively (resp). A point y is said to be a weak efficient
point of B C Y with respect to (w.r.t.) C, denoted by y € WMincB, iff (B—y) N (—intC) = 0. A
subset B C Y has the weakly C-minimal property if for all y € B there exists y € WMincB such
that y—y € —intCU{0}, i.e., B—y C intCU{0}. For the cones C C Y and D C Z,

Ct:={y"eY*|{y",c)>0,VceC},

Dt :={d" €Z"|(d*,z) >0, Vz€ D}

are positive polar cones of C, D, resp. A convex set B C Y is called a base for C if 0 ¢ clB and
C={tb|teR;,be B}

Definition 2.1. [4, 12] Let A be a nonempty subset of X.
(i) The contingent (or Bouligand) cone of A at X € clA is

T(A,X):={xeX|3,10,3x, > x, Vne N x+t,x, €A}.
(i) The adjacent cone of A at x € clA is
TP(A,%) :={x € X |V, 1 0,3x, = x, Yk € N, i+ 1,x, € A}.
(i11) The interior tangent cone of A at X is
IT(A,x):={x€ X |Vt, ] 0,Vx, — x, Vn large, X +t,x, € A}.

Remark 2.1. The following properties can be checked directly.

() IT(A,%) C T(A,%) C T(A,%).
(i) 0 € T(A,%) and 0 € IT(A, %) if ¥ € intA.
(iii) [4, 12] If A is a convex set then T?(A, %) = T(A,X) = clcone(A — ).
(iv) [11, 12] If A is a convex set then IT (A, x) = intcone(A — X) = cone(intA — x).
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For a given set-valued map P : X =2 Y, the domain, graph and epigraph of P are defined
respectively by

domP :={x € X : P(x) # 0},
grP :={(x,y) eX xY :y € P(x)},
epiP :={(x,y) e X xY :y € P(x)+C}.

The so-called profile mapping of P is Py defined by P, (x) = P(x) +C. P is C-convex if its
epigraph is convex, i.e., for all x,x’ € X and A € [0,1],

AP(x)+(1=A)P(x) C P(Ax+ (1 —2A)X) +C.

Definition 2.2. [8] Let P : X = Y be a set-valued map, (%,y) € grP and u € X. P is said to be
directionally metrically subregular at (¥,y) in direction u w.r.t. S C X iff there are o > 0 and
y > 0 such that, for all 7 €]0, y[ and v € Bx (u,y) withx+tv € S,

d(x+m, P71 F)NS) < ad (5, P(F+1v)).

Definition 2.3. [4] Let P: X = Y and (%,y) € grP.

(i) The set-valued map P is said to be Aubin at (%,y) if there exist neighborhoods U of x
and V of y, and L > 0 such that

P(x)NV C P(x') + L|jx —X'||c1By, Vx,x' € U.

(ii) The set-valued map P is said to be C-Aubin at (%, y) if there exist neighborhoods U of x
and V of y, and L > 0 such that

P(x)NV C P(x')+C+L|jx—x||c1By, Vx,x' € U.

Definition 2.4. Let P: X =2 Y be a set-valued map and (%,y) € grP.
(i) [4] The contingent derivative DP(x,y) of P at (%,¥) is

DP(%,y)(u) := {v €Y |3, 10, I(up,vn) — (u,v), Vn € N,y +1,v, € P()H—lnun)}.
(ii) [4] The adjacent derivative D?P(%,¥) of P at (,7) is

DbP(X,)?)(u) = {v €Y |V, 10, I(up,vn) — (u,v), Vn € N,y +t,v, € P()E—Hnun)}.
(iii) [7] The lower (Dini) derivative D! P(%,7) of P at (%,5) is

DZP()Z,)?)(u) = {v €Y |V, )0, Yu, = u, v, — v, Vn e N,y +t,v, € P()E—l—tnun)}.
(iv) [7] The Dubovitskii-Miljutin derivative DPY P(%,7) of P at (,) is
DPMP(%,5)(u) := {v €Y |V, 10, Y(up,vy) — (u,v), Vnlarge,y+t,v, € P()E—i—tnun)}.

Remark 2.2. Let P: X =2 Y be a set-valued map, (X,y) € grP and u € X.
(i) DPMP(%,3)(u) C D'P(%,5)(u) C DbP(x, V) (u

)
(ii) [4]If P is convex then D’P(%,¥)(u) = DP(%,7)(u).
(i) If P is C-convex then D’P, (%,7)(u) = DPy (%, 7)(u).
(iv) [7]If P is Aubin at (%,7) then D'P(%,7)(u) = DbP()Z 7)(u)
(v) If P is C-Aubin at (%,7) then D'P, (%,7)(u) = D"Py (%,7)(u)
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Lemma 2.1. [6] Let P: X =Y, (X,y) € gtP, and P be C-convex. Then, for all x € X,
P(x) —y C DP,(%,5)(x — %).

Let A and B be nonempty subsets of Y, denoted by A,B € Z(Y). Recall some set relations
[16, 17] based on cone ordering C as follows:

(i) A=LB&A+CDB,
(ii) A <L B< A+intC D B.

3. KARUSH-KUHN-TUCKER OPTIMALITY CONDITIONS

Inthesequel, let F: X =Y, G:X = Z,H : X = W be three set-valued maps. We consider
the following set optimization problem with mixed constraints:

(P):=c —min{F(x) [ G(x)N(=D) #0,0 € H(x)}.

Denote Q := {x € X|G(x) N (—D) # 0,0 € H(x)} the set of feasible points of (P). A point
X € Q is a strict minimal solution [1] with respect to %lc of (P), denoted by x € Min(P, <lc) if
for any x € Q, one has F (x) AL F(%).

Lemma 3.1. [18] Let X € X and y € F(X). Suppose that (F —5,G,H)(X) + (intC x D x {0}) is
a convex set and intH (X) # 0, where (F —y)(x) := F(x) — y. If the system
(F(x) —y)N—intC #0,G(x)N—D # 0,0 € H(x)
admits no solution x € X, then there exists (c*,d*,w*) € (CT x Dt x W*)\{(0,0,0)} such that
(c*,y—=y)+(d",2) + (Ww*,w) >0,
for all x € X and for all (y,z,w) € (F,G,H)(x).
For the sake of convenience, we always assume that domD(F},G,H)(x,y,z,w) = X and

domDF, (x,y) NdomDG (x,z) N"domDH (x,w) = X forall x € X,y € F(x),z € G(x)N—D and
w € H(x).

3.1. Necessary Optimality Conditions.
Proposition 3.1. Lerx € X,y € F(%), 2 € G(X¥)N—D, 0 € H(X) and % be a strict minimal solution

w.r.t. <L of (P). Suppose that the following conditions hold:
c pp 8

(i) WMincF (%) = {7}, F(X) has the weakly C-minimal property,
(ii) (F—y,G,H)(X)+ (intC x D x {0}) is a convex set and intH (X) # 0.

Then, there exists (c*,d*,w*) € (CT x D™ x W*)\{(0,0,0)} such that
(€ y)+(d"2) + (ww) >0 (3.1)
and
(d",2) =0, (3.2)

for all x € X and for all (y,z,w) € D(Fy+,G1,H)(x%,5,Z,0)(x).
Moreover, c* € CT\ {0} if the following constraint qualification holds
(SCQ) : 0 € intH (X ) and there exists X € X such that G(£) N —intD # 0 and 0 € H(X).
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Proof. We first prove that (F(x) —y) N —intC = @ for any x € Q. Suppose to the contrary that
there exists £ € Q such that (F (%) —y) N —intC # 0. Then, there exists y € F (%) satisfying
§— 3 € —intC, or equivalently, y € y + intC. Since WMincF (X) = {7} and F(X) has weakly
C-minimal property, one has

F(x) Cy+intCU{0} C F(%)+C+intCU{0} C F(X) +intC,
contradicting with the fact that X is a strict minimal solution w.r.t. —<lc of (P). Hence, for any
x € Q, (F(x) —y) N —intC = 0. This leads that the system
(F(x)—y)N—intC #0,G(x)N—D # 0,0 € H(x)
admits no solution x € X. Then, we deduce from (ii) and Lemma 3.1 the existence of (¢*,d*,w*)
e Ct x D" xW*\ {(0,0,0)} such that, for all x € X and for all (y,z,w) € (F,G,H)(x),
<C*,y_)_]>+<d*7z>+<w>k7w> ZO (33)

We justify that (d*,Z) = 0. Indeed, by takingx =%, y=y € F(x),z=z€ G(X) and w=0 € H(X)
in (3.3), we obtain that (d*,Z) > 0. On the other hand, d* € D™ and 7 € —D give that (d*,7) <0.
Thus, (d*,z) = 0. Since ¢* € C" and d* € D™, we derive from (3.3) that, for all x € X and for
all (y,z,w) € (F,G,H)(x)+ (C x D x {0}),

(¢ y=9)+{d"z=2)+ (W', w) 2 0. (3.4)

Finally, let x € X and (y,z,w) € D(F},G+,H)(X,5,Z,0)(x). Then, there existt, | 0,x, € X and
(Yns2nswn) € (F,G,H)(x,) + (C x D x {0}) such that
<xn_)z Yn—Y Zn—2 wp,—0

— (X W),
—E S DR WED) L ()

From (3.4), one yields

<C*7yn—y‘> N <d*’ Zn —z> N <W*, wn—0> =0,
tn In tn
Letting n — +oo in the above inequality, we get

(c*,y)+(d*,2) + (w",w) > 0.

Now, let (SCQ) hold. We will verify that ¢* # 0 by contraposition. Suppose that ¢* = 0. Then,
from (3.3), for all (z,w) € (G,H)(X)+ D x {0},

(d*,z) + (w",w) > 0. (3.5)

Employing (SCQ) leads us to the existence of Z € G(£) with —Z € intD and 0 € H(%). Since
d* € D" and 7 € —intD, one gets

(d*,2) <. (3.6)
If d* # 0, then we deduce from (2,0) € (G,H)(X) +D x {0} C (G,H)(X)+ D x {0} and (3.5)
that
(d*,2) = (d",2) + (w",0) > 0,
contradicting with (3.6), so d* = 0. Since 0 € intH (X), it follows from (3.5) that there is § > 0
satisfying (w*,w) > 0 for all w € By (0,6) C H(X), i.e., w* = 0. This is unreasonable because
(c¢*,d*,w*) # (0,0,0). Hence, c¢* # 0. O
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In the following we give a result, similar to Proposition 3.1, for the case when the derivatives
of objective and constraint functions are considered separately.

Proposition 3.2. Ler x € X, y € F(%), 7 € G(X)N(—D), 0 € H(X) and X be a strict minimal
solution w.r.t. —<lc of (P). Suppose that the following provisos hold:
(i) WMin¢F (%) = {7}, F(X) has the weakly C-minimal property,
(ii) F, G, H are C-convex, D-convex, convex, respectively,
(iii) Fy is C-Aubin at (%,5), G+ is D-Aubin at (X,7),
(iv) H is directionally metrically subregular at (%,0) w.r.t. X.
Then there exists (c*,d*,w*) € CT x DT x W*\ {(0,0,0)} such that (d*,Z) = 0 and
(e, y) +{d",2) +(w",w) 2 0,
for every x € X, y € DF,(%,5)(x), z € DG4 (X,Z)(x) and w € DH(X,0)(x). Moreover, ¢* # 0 if
the following constraint qualification holds
(KRZCQ) : (DG4 (%,Z),DH(x,0)) (X)+cone(D+7) x {0} =Z x W.
Proof. By similar arguments as in Proposition 3.1, we infer from (i) that
(F(x) —y)N—intC = 0,Vx € Q. (3.7)
Moreover, we derive from (ii), (iii) and Remark 2.2 that D'F, (%,7)(x) = DF(%,7)(x) and
DG, (£,7)(x) = DG (%,7) (v).
Firstly, we verify that, for all x € X,
<D1F+()E,)7) (x),D'G4(%,7)(x), DH(%,0) (x)) N((—intC) x (—intD —Zz) x {0}) =0.  (3.8)
Arguing by contradiction, suppose that x € X and (y,z) € (—intC) x (—intD — Z) such that
(%,2,0) € (D'F4 (%,5)(x), D' G 4 (%,2) (x), DH (%, 0) (x)).

As 0 € DH(%,0)(x), there exist #, | 0, (x,,w,) — (x,0) satisfying t,w, € H(X + t,x,). We
deduce from the directional metrical subregularity of H the existence of y > 0 such that, for n
large enough,

d(Z+ tyxn, H1(0)) < yd (0, H(E+tyxn)).
Thus, there is x, € H~'(0) such that

(| % + tnxn —x;1|| < Ylltawan -

%(xil — ¥), we have ¥+ 1,%, = x, € H~1(0), ||x, — %, < ¥||/wa||, and hence, %, —

x. As z € D'G,(%,7)(x) N (—intD —Z), for the above t, and x,, there exist z, — z fulfilling
7+ thzn € G(X+t,x,) + D. Moreover, since z € —intD — Z, 7, — z and —intD — 7 is open,
one has 7 +t,z, € —intD for n large. Therefore, (G(X + t,x,) + D) N (—intD) # 0 leads to
G(X+1typx,) N (—D) # 0. This implies that X +t,x,, € Q for large n.

Since y € D'F, (%,¥)(x), for the above 1, and x,,, there exist y, — y and ¢, € C such that
V+t,yn —cn € F(X+1tyxy,) for all n € N. As y € —intC, y, — y and —intC is open, one has
tyyn € —IntC for n large enough. Hence, t,y, — ¢, € —intC — C = —intC. Thus, there exists
X+ t,x, € Q such that

Setting X, :=

thyn — cn € (F (X +tyx,) — ) N (—intC),
contradicting with (3.7). This confirms (3.8).
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Moreover, we derive from (ii) that (DFy (%,5)(x),DG1(%,Z)(x), DH(%,0)(x)) is a convex set.
Hence, it follows from (3.8) and the standard separation theorem that there exists (¢*,d*,w*) €
Y*xZ*xW*\ (0,0,0) such that

(")) +(d"2) + (W', w) = (", ) + (d",d) + (d", =2),
forall x € X, (y,z,w) € (DFy(%,¥)(x),DG+(%,Z)(x),DH(%,0)(x)), ¢’ € —intC and d’ € —intD.
We assert by the assumptions —intC and —intD are cones that
(c*,y) +{d*,z) + (W, w) +(d*,Z) > (c*,ec) + (d*,nd’), (3.9)
forall x € X, (y,z,w) € (DF.(%,7)(x),DG+(%,Z)(x),DH(%,0)(x)), ¢’ € —intC, d’ € —intD, € >
0 and 1 > 0. We claim that (c*,c) > 0 for all ¢ € intC. If otherwise, there exists 0 # ¢ € intC
such that (¢*,¢) < 0. Then, 0 # ¢ := —¢ € —intC and (c*,¢’) > 0. Hence, we deduce from (3.9)
that
(")) +(d"2) + (W' w) +(d".2) = (", &T) + (d",nd"),
which leads to a contradiction when passing € — 4oo. Thus, (c*,c) > 0 for all ¢ € intC, and
consequently,
(c*,c) >0, VceC=clC=cl(intC),
i.e., ¢* € CT. By similar arguments, one gets d* € D™
Now, we will prove that (d*,z) = 0. Letting € — 0" and n — 0™ in (3.9), we ensure that
(cy) +{d",z) + (W', w) +(d",2) =2 0, (3.10)
forall x € X, (y,z,w) € (DF4(%,5)(x),DG+(%,Z)(x), DH(%,0)(x)). It follows from the strictly
positive homogeneousness of contingent derivatives that, for any r > 0,
{DF, (%,7)(0) = DF; (£,5)(1.0) = DF (£,5)(0),
tDG+ (X7Z) (O) = DG+ (JE?Z) (lO) = DG+ (X7Z) (0)7
tDH(%,0)(0) = DH(%,0)(z.0) = DH(%,0)(0).
This, taking to account (3.10) with x = 0, entails that
(¢ y) +(d",2) + (W' w)) +(d",2) = 0,
for all ¢ > 0. Passing to limit as  — 0, one has (d*,Z) > 0. On the other hand, since 7 € —D,
(d*,z) <0, which in turn implies the equality (d*,z) = 0. Since ¢* € C*, d* € D' and (d*,Z) =
0, we use (3.10) to deduce that
() +(d",2) + (w',w) 20, (3.11)

forallx € X,y € DFy(%,y)(x), z € DG+ (%,Z)(x) and w € DH (%,0)(x).
Finally, let (KRZCQ) hold. We will prove that ¢* # 0. For every (z,w) € Z x W, there exist
B>0,xeX,7e€ DGy (%,Z)(x),w € DH(%,0)(x) and d € D such that

(z,w) = (Z,w) + (B(d +2),0).

Reasoning by contraposition, assume that ¢* = 0. Then, using (3.11) tells us the inequality
(d*,Z) + (w*,w) > 0. Fromd € D, d* € D" and (d*,Z) = 0, one gets

(d*,z) + (w",w) = (d*,2) + (W", W) + B(d",d) + B(d",Z) > 0.

Since (z,w) € Z x W is arbitrary, we arrive at (d*,w*) = (0,0). This is a contradiction to
(c¢*,d*,w*) # (0,0,0). O
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3.2. Sufficient Optimality Conditions.

Lemma 3.2. Let x € Q. If, for each x; € Q, there exists y; € F(X) such that
then X is a strict minimal solution w.r.t. <L of (P).

Proof. Suppose by contradiction that X € € is not a strict minimal solution w.r.t. <IC of (P).
Then, there exists £ € Q such that F(£) <L F (%), i.e., F(£) +intC D F(x). Consequently, for all
y: € F(X), there exists ; € F (%) such that y; € §; +intC, or equivalently, §; —y; € —intC. Hence,
(F(%) —y;) N —intC # 0, contradicting to (3.12). O

Proposition 3.3. Letx € X, 7€ G(X)N—D, w=0 € H(X) and F,G,H be C-convex, D-convex,
convex, resp. Suppose that there exist ¢* € CT\ {0} and (d*,w*) € D x W* such that, for
all x € X, for all y € F(x) and for all (y,z,w) € (DF4+(X,y)(x),DG4(x,Z)(x),DH(x,0)(x)) \

{(0,0,0)},
(c*,y) +(d",z) + (w",w) >0, (3.13)

and (d*,7) = 0. Then, X is a strict minimal solution w.r.t. %lc of (P).

Proof. Reasoning ad absurdum, assume that X is not a strict minimal solution w.r.t. —<ZC of (P).
Invoking from Lemma 3.2, there is x; € Q such that, for all y, € F (%),

(F(x;) — ;) N —intC # 0.

This implies the existence of x; € Q such that, for all y, € F(X), there exists y; € F(x;) satisfying
y: —y; € —intC. This is nothing else but there are y, € F(x;),z; € G(x;) N —D, and 0 € H(x;)
such that y; — y; € —intC, and thus,

(c*,y—31) <O. (3.14)

Applying Lemma 2.1 gives us that
(ye — 31,24 —72,0—w) € (DF(%,5)(x; — X),DG+(X,Z)(x; — X), DH(%,0) (x; — X)).
Therefore, (3.13) amounts to
<C*ayl‘ _)_)l‘> + <d*,Z[ _Z> = <C*7yl _)7[> + <d*,Z[ _Z> + <W*7O> 2 O
Because d* € D™ and z; € G(x;) N —D, we have (d*,z;) <0. This together with (d*,7) = 0 leads
that
<C*7yl _)_)l‘> Z _<d*>Zl> Z Oa

contradicting to (3.14). ]

Example 3.1. Let X =R2.Y =Z=W =R and C =D =Ry, F(x;,x2) = {y e R | y > x?},
G(x1,x) ={z€ R |z> —2x} and H(x1,x2) = {w € R | w= —x}. Then, Q = {(x1,x) €
R? | x, = 0}. By taking ¥ = (0,0), y = 0 and Z = 0, one has F(x) +intC 2 F(%),Vx € Q,
i.e., F(x) AL F(%),Vx € Q, in other words, ¥ is a strict minimal solution w.r.t. <L of (P). We
can check that F' is C-convex, G is D-convex, H is convex and H is directionally metrically
subregular at (x,0) w.r.t X. Since F;(x) = F(x), G4+ (x) = G(x), it is easy to justify that F, is
C-Aubin at (%,y), G+ is D-Aubin at (X,Z). By some calculations, we get that, for all x € X,

DF,(%5)(x) = {y € R |y > 0}, DG+ (£, 2)(x) = {z€R | > ~2x},
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DH(x,0)(x) ={weR |w=—x}.
Hence,
(DG4(%,7Z),DH(%,0)) (X)+cone(D+7Z) x {0} =Z x W,

1.e., (KRZCQ) holds, and thus, all assumptions of Proposition 3.2 are fulfilled. By choosing
(c*,d*,w*) = (1,0,0), one gets that (c*,d*,w*) € (R4 \ {0}) x Ry x R satisfying (d*,Z) =0
and

(c*,y)+(d*,2) + (w",w) >0, (3.15)

for every x € X, y € DF}(X,7)(x), z € DG4+ (%,Z)(x) and w € DH(%,0)(x). In addition, the
hypotheses of Proposition 3.3 are also satisfied. So, we can derive from (3.15) that X is a strict
minimal solution w.r.t. <IC of (P).

4. DUALITY

In this section, we formulate a Mond-Weir [21] type dual problem and a Wolfe [25] type dual
problem of (P) and explore weak and strong duality relations.
4.1. Mond-Weir type duality. For X' € X, y € F(¥'), Z € G(X)n(-D),w € HX'), ¢* €
Ct\{0},d* € D" and w* € W*, let us denote

L(xl7yl7zl7wl7c*7d*7w*) = F(x/)
We consider the Mond-Weir type dual problem of (P) as follows
<L —max L(x,y,Z W, c*,d* . w*) = F(¥),
st (c*,y)+(d*,z) + (w*,w) >0,
(Dyw) - V(y,z,w) € UX(DF+(X’,y’)(X),DG+(sz/)(X),DH (', w') (x)),
xe

(@,2)+ (w*w') >0,
(c*,d*,w*) € (CT\{0}) x DT x W*,

\

The feasible set of problem (Dyy ) is

Quw = {(x',y',z/,w/,c*,d*,w*) EXXY XZXW x(CT\{0}) x D" xW* y € F(x'),
7 € G(X)N(=D),w € H(X),{c*,y) +(d*,z) + (w*,w) >0,

V(y,z,w) € |J (DF: (¥,y)(x), DG+ (¥',2) (x), DH(x',w') (x)), (d*,2) + (w*,w') > 0}-
xeX
A point (x,y',7/,w',c*,d*,w*) € Quw is a strict maximal solution w.r.t. <L of (Dyw) if, for
all (X/, y/7 Zlv wl7 C*v d*aW*) € Quw,
L('x_/7)7/’z_/7 M_}/’ E*7d_*7v‘;*) 7416‘ L('xl’yl7zl7wl7 C*’d*7w*)'

Proposition 4.1. (Weak duality) Suppose that F,G,H be C-convex, D-convex, convex, resp. If
x€Qand (X,y, 7, W,c*,d*,w*) € Quw, then F(x) AL L(X',y .2 W c*,d*,w*).
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Proof. We assume to the contrary that F(x) <L L(x',y/,Z/,w/,c*,d*,w*) = F(x'). Then, one
gets that F(x) +intC D F(x'). This ensures the existence of y € F(x) and y' € F(x’) such that
y—) € —intC. Since ¢* € CT \ {Oy+}, one has

(c*,y—y") <0. 4.1)

The facton (x',y, 2/, w',c*,d*,w*) € Quw ensures thaty’ € F(x'), 7/ € G(x')N(—D), w' € H(X'),
(c*, d*, w*) € (CT\{0}) x DT x W,

(d*,7) + (w*,w) >0, 4.2)
and
(c*,y) 4+ (d*,2) + (W, w) > 0,Y(y,z,w) € | (DF(x,y)(x), DG (x',')(x),DH (x',w)(x)).
xeX
(4.3)

It follows from the convexity assumptions and Lemma 2.1 that, Vx € X,
(F(x) =y, G(x) = 2, H(x) =w) C (DF+ (') (= X'), DG4 (¥, ) (x = X'), DH(¥ ,w/) (x — ).
Since x € Q, there exists z € G(x) N (—D) and 0 € H(x). This implies that
(d*,z) <O0. (4.4)
Furthermore, for any y € F(x), one has
(r=y,2=2,0=w") € (F(x)=Y,G(x) =< H(x) -
€ (DF-(¥,y)(x—x), DG4 (¢, Z)(x—x), DH( ,w) (x ),
and hence, utilizing (4.3) tells us that
(c*y=y)y+(d",z)— (@ )+ (W' wW)) = (" y=y)+{d",z—Z)+ (w",0-w') > 0.

Combining this with (4.2) and (4.4), we arrive at

(=) = —(d" )+ ((d". )+ (W W) >0,
which contradicts with (4.1). This completes the proof. 0

Proposition 4.2. (Strong duality) Letx € X, j € F(%), Z€ G(X)N(—D), w=0 € H(X). Suppose
that the following conditions hold:
(i) WMincF (%) = {y}, F(X) has the weakly C-minimal property,
(ii) F, G, H are C-convex, D-convex, convex, respectively,
(iii) Fy is C-Aubin at (%,y), G4 is D-Aubin at (%,7),
(iv) H is directionally metrically subregular at (%,0) w.r.t. X,
(v) (DG (%,Z),DH(%,0)) (X)+cone(D+7z) x {0} =ZxW.
If X € Q is a strict minimal solution w.r.t. <% of (P), then there exists ¢* € CT\ {0},d* € D*

Proof. We derive from Proposition 3.2 the existence of (¢*,d*,w*) € C*\ {0} x D™ x W* such
that, for all x € X and for all (y,z,w) € (DFL(%,5)(x), DG (%,Z)(x),DH(%,0)(x)) \ {(0,0,0)},

(€,y)+(d",2) + (", w) 2 0 and (d*,2) + (w*,W) = (d*,Z) = 0.
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Hence, (%,7,Z,w,c*,d*, '*) € Quw and L(%,y,Z,w,c*,d*,w*) = F(x). Now, suppose to the
contrary that (¥,7,Z,w,c*,d*,w*) is not a strict m1n1ma1 solution w.r.t. <% of (Dyw). Then,
there exists (x',y',7,w,c*, d*, w*) € Quw such that

F(%) = L(%,7,Z,w,&",d*,w*) <- L(x,y,Z,w,c*,d*,w*),

contradicting with Proposition 4.1. Hence, (x,y,Z,w,c*,d*,w") is a strict maximal solution
w.r.t. <L of (Dyw). O

Remark 4.1. Let X =R"Y =RP.Z=RI,W =R",C=RE D=RL, F:=(f1,....[,), G:=
(81,---:8¢), H := (hy, ..., h,) be single-valued functions, where f;,i=1,...,p, g;,j=1,...,q, and
hi,k =1,...,r, are continuously differentiable functions from R” to R. Then, for ¥ € R",
DFy (%, f(%))(x) = V(%) (x) + R}, DG (%,8(%)) (x) = Vg(¥) (x) + R,
DH (x,h(X))(x) = {Vh(x)(x)},Vx € X.
The Mond-Weir dual problem of (P) is
RY —max L(x', f(¥'), g(x'), h(x'),c*,d*,w*) = f(x'),
s.t. VIO e* +Veg(X)Td* +Vh(x)Tw* =0,

(d*,g(x)) + (w*,h(x')) =0,
(c*,d*,w*) € (RE\{0}) xRL xR”,

(DMW) .

since
(VF) " +Vg() d* + Vh(x) T w*,x)
= (", V() (x)) +(d", Vg(x') (x)) + (w*, Vh(x') (x))
>0
for all x € R" if and only if
V)T e +Veg(X)Td* +Vh(x)Tw* =0.
When p = 1, this problem is exactly the Mond-Weir dual problem (see [5, 21]).

Example 4.1. Let X =R? Y =Z=W =R and C=D =R, F(x;,x) = {y € R |y > x}},
G(x1,x2) ={z€R|z>—2x} and H(x1,x2) = {w € R | w = —x, }. Consider the following set
optimization problem with mixed constraints:

(P): =t —min{F(x) | G(x)N1(~D) £0,0 € H(x)}.

Then, Q = {(x1,x2) €R? | x, =0}. Forx¥' € X,y € F(¥), 7 € G(¥)N(-D),w' € H(x'), one
gets that, for x € R2,
b [ yER|y>2xx ), ify =P,
DF,(x,y")(x) = { R, ify > x’12,

ZER|z> —2x}, if7 =-2x),
DG (¢,2)(x) = { { | :
R, if 2 > —2x},

DH(xX' w)(x)={weR |w=—x,}.
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The Mond-Weir type dual problem of (P) is

(<L —max L(¥,y,7,w',c*,d*,w*) = F(¥'),

s.t.c'y+d z+w'w >0,

(Duw) - V(yzw) € LHJQZ(DF+(X',y’)(X),DG+(X'7Z’)(X)vDH (', W) (x)),
d*7 +ww >0,
(c*,d*,w*) € (R \{0}) xRy xR.

\

By picking ¥ = (0,0), = 0 and 7 = 0, we obtain F(¥) = {y e R |y >0}, G(X) = {z e R | z > 0},
H (%) = {0}, and hence, y € F(X), z € G(¥)N(—D), w=0 € H(X). By some straightforward cal-
culations show that all the assumptions in Proposition 4.2 hold. Taking (¢*,d*,w*) = (1,0,0),
we yield the existence of (¢*,d*,w*) € (R4 \ {0}) x Ry x R such that d*7 = 0 and

cy+d'z+w'w >0,

for every x € R?, y € DF, (%,¥)(x), z € DG (%,Z)(x) and w € DH(%,w)(x). Hence, we derive
from Proposition 4.2 that (x,y,Z,w,c*,d*,w") is a strict maximal solution w.r.t. <ZC of (Dyw ).

We can check directly that (%,7,%z,W,&*,d*,w*) is a strict maximal solution w.r.t. <lc of
(Duw) as follows. Firstly, we will prove that if (x',y’,z/,w',c*,d*,w*) € Quw then x| = 0.
Reasoning by contraposition, assume that there exists (x’,y",2/,w’,c*,d*,w*) € Quw and x| # 0.
Since

cy+diz+w'w >0,

for all (y,z,w) € %Z(Dﬂ(X'J')(x),DG+(X'7Z')(X),DH(XCW')(X)% 0 € DG (x',2)((x1,0))
and 0 € DH(x’,w’)x((xl,O)), one has

'y >0,vye | DF (X)) (x), (4.5)
xeX

where X| = {x € R? | x = 0}. Then, there are only two cases as follows.

x Case 1. If y) > x2, then DF (x',y')(x) = R for all x € X;. Hence, we deduce from (4.5) that
c* =0, contradicting with (X, y’,Z/,w', c*,d*, w*) € Quw.

* Case 2. If y) = x'2 > 0, then DF, (x',y')(x) = {y € R | y > 2x}x; } for all x € X;. Hence, by tak-
ingx=(1,0) € X;,y=2x; € DF.(x¥',y')((1,0)),x=(—1,0) € X1,y = —2x] € DF, (', y)((—1,
0)), we deduce from (4.5) that ¢* = 0, contradicting with (x',y',7/,w/,c*,d*,w*) € Quw.

Thus, if (x',y,Z,w,c¢*,d*,w*) € Quw then x| = 0. Hence, for all (x'.y,7,w',c*,d*,w*) €
Qurw, one has

F(%)+intC p F(x'), ie., F(X) AL F(x)).

Equivalently, for all (x',y’,7,w/,c*,d*,w*) € Quw,

L(%,5,Z,w,&",d*,w*) AL L(x,y,Z W, c*,d*,w"),
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4.2. Wolfe type duality. For X' € X, y € F(X'), 7 € GX)n(-D),w € H(X), ¢* € CT\
{0},d* € DT, w* € W*, and a fixed point & € C'\ {0}, denote

Z(x',y’,z/,w/,c*,d*,w*) =F(X)+ (d*,7)é+ (w*,w')é.
We define the Wolfe type dual problem of (P) as follows:

(<L —max Ly, 2w, c\d w*) = F(X) + (d, 2)+ (w* W),

s.t. (c*,y) +(d*,z) + (w*,w) >0,

(Dw) . V(y,z,w) € XL€JX(DF+(x’,y/)(x),DG+(x’,z’)(x),DH(x’,w’)(x)),
(c¢*,¢) =1,

(c*,d*,w*) € (CT\{0}) x DT x W*.

\

The set of feasible points of (Dy ) is
Qy = {(x',y’,z’,w’,c*,d*,w*) EXXY XZXW x (CT\{0}) x Dt x W*,y € F(¥),
7€ GX')N(=D),0 € H(X'),(c*,y) + (d*,z) + (W*,w) >0,

‘v’(y,z,w) € U (DF+(x/,y')(x),DG+(x/,z/)(x),DH(x/,w/)(x)), <C*75> = 1}

xeX
A point (X', y',7/,w',¢*,d*,w*) € Qu is said to be a strict maximal solution w.r.t. <L of (Dy)
if, for all (x',y', 7/, w',c*,d*,w*) € Qy,

L(X, Y, 2w, ¢, d* w*) AL LK Y, 2 W, d* wh).
Proposition 4.3. (Weak duality) Suppose that F,G,H be C-convex, D-convex, convex, resp. If
x€Qand (x,y,7, W, c*,d*,w*) € Quw, then F(x) AL L(x',y', 2, W, c*,d*,w*).
Proof. We assume to contrary that
F(x) <L LY,y 2 W, ¢t d* w*) = F(X) 4 (d*,2)é + (w*, w)é.
Then, we get that
F(x)+intC D F(X') + (d*,7)é+ (w",w')é.
This implies the existence of y € F(x) and y’ € F(x’) such that
y— O +{d*,7)e+ (w,w')é) € —intC.

Since ¢* € C*\ {0} and (c*,¢) = 1, we derive from the above inequality that

("3 =)= (") + W' n)) = (" y =) = (") + (W', w))(c",8) <0. (4.6)
The fact (x',y,7/,w',c*,d*,w*) € Qy justifies that y € F(¥'), 7 € G(X')N(=D), w € H(X'),
(c*,d*,w*) € (CT\{0}) x DT x W* and

(c*,y) +(d",z) + (w",w) >0, 4.7)
forall (y,z,w) € U (DF+(x,y)(x),DG4+(x',7')(x),DH(x',w")(x)). It follows from the convex-
ity assumptions e)lcrfc)i( Lemma 2.1 that, Vx € X,

(F(x) ¥, G(x) — &, H(x) — W) C (DFy (¢ /) (x = '), DG (¥, ) (x— ), DH (' w/)(x — ).
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Since x € Q, there exists z € G(x) N (—D) and 0 € H(x). This leads that
(d*,z) <O0. (4.8)
Thus, for any y € F(x), one has
v—=Y,z=2,0-w) € (F(x)—Y,G(x) -2, H(x)—w)
- (DF+<X/,yI)(X—X/),DG+(X/,Z/)(X—X,),DH(X/7W/)(X—X,)).
Therefore, we deduce from (4.7) that
<C*7y_yl> + <d*,Z> - (<d*7zl> + <W*7WI>) = <C*7y_y/> + <d*7z_zl> + <W*70_W/> 2 0.
This along with (4.8) guarantees that
(¢"y=Y)—({d" )+ (w'w')) = —{d",z) > 0,
which contradicts with (4.6). 0]
Proposition 4.4. (Strong duality) Letx € X, y € F(%), Z€ G(X)N(—D), w=0 € H(X). Suppose
that the following conditions hold:
(i) WMingF (x) = {y}, F(X) has the weakly C-minimal property,
(ii) F, G, H are C-convex, D-convex, convex, respectively,
(iii) F is C-Aubin at (X,¥), G is D-Aubin at (%,7),
(iv) H is directionally metrically subregular at (x,0) w.r.t. X,
(v) (DG+(X,Z),DH(%,0)) (X)+cone(D+2) x {0} =Z xW.
If X € Q is a strict minimal solution w.r.t. <% of (P), then there exists ¢* € CT\ {0},d* € D*

Proof. According to Proposition 3.2, there exists (c*,d*,w*) € C*\ {0} x D* x W* such that,
for all x € X and for all (y,z,w) € (DFy(%,¥)(x),DG+(%,Z)(x),DH(%,0)(x))\ {(0,0,0)},

(&%) +{d*,z) + (W*,w) >0 and (d*,Z) + (w*, W) = (d*,Z) = 0.

Since ¢ € C\ {0}, ¢* € C*\ {0}, one has & := (c*,¢) > 0. Setting (¢*,d*,w*) :=
we have

(& ,d*,w*) € CT\ {0} x D" x W* and (¢*,&) = 1.
Moreover, for all x € X and for all (y,z,w) € (DFy(%,5)(x),DG+(%,Z)(x),DH(%,0)(x)) \ {(O,
0,0)},

(@ )+ (d2) 4 8%, ) =~ (8) {2+ (77,w)) 20,

Hence, (%,7,Z,w,&*,d*,w*) € Qu. Now, suppose to the contrary that (%, ,
a strict maximal solution w.r.t. <% of (Dw). Then, there exists (x',,Z,
such that L(%,3,z,w,¢",d*,w*) <L L(X',y,Z/,w',c*,d*,w*). Since (w*, %) = (w*,
(d*,z) = 2(d*,Z) =0, one gets

’
/
w,

F(%) = L(%,5,z,w,&",d*,w*) <L L(x' .y ,Z W, c*,d*,w"),

contradicting with Proposition 4.3. So, (¥,7,Z,w,¢*,d*,w*) is a strict maximal solution w.r.t.
<L of (Dw). O
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